Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Physiol Biochem ; 206: 108302, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38171134

ABSTRACT

Yellow seed is one desirable trait with great potential to improve seed oil quality and yield. The present study surveys the redundant role of BnTTG1 genes in the proanthocyanidins (PA) biosynthesis, oil content and abiotic stress resistance. Stable yellow seed mutants were generated after mutating BnTTG1 by CRISPR/Cas9 genome editing system. Yellow seed phenotype could be obtained only when both functional homologues of BnTTG1 were simultaneously knocked out. Homozygous mutants of BnTTG1 homologues showed decreased thickness and PA accumulation in seed coat. Transcriptome and qRT-PCR analysis indicated that BnTTG1 mutation inhibited the expression of genes involved in phenylpropanoid and flavonoid biosynthetic pathways. Increased seed oil content and alteration of fatty acid (FA) composition were observed in homozygous mutants of BnTTG1 with enriched expression of genes involved in FA biosynthesis pathway. In addition, target mutation of BnTTG1 accelerated seed germination rate under salt and cold stresses. Enhanced seed germination capacity in BnTTG1 mutants was correlated with the change of expression level of ABA responsive genes. Overall, this study elucidated the redundant role of BnTTG1 in regulating seed coat color and established an efficient approach for generating yellow-seeded oilseed rape genetic resources with increase oil content, modified FA composition and resistance to multiple abiotic stresses.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Germination/genetics , Seeds/genetics , Seeds/metabolism , Brassica rapa/genetics , Mutagenesis , Stress, Physiological/genetics , Plant Oils/metabolism , Gene Expression Regulation, Plant
2.
Mol Biol Rep ; 39(12): 10713-22, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23053968

ABSTRACT

Hard clam (Meretrix meretrix) is an economically important bivalve in China. In the present study, a gene coding for an intracellular Cu/Zn-SOD was cloned and characterized from hard clam. The full-length cDNA of this Cu/Zn-SOD (designated as Mm-icCuZn-SOD) consisted of 1,383 bp, with a 462-bp of open reading frame (ORF) encoding 153 amino acids. Several highly conserved motifs, including the Cu/Zn binding sites [H(46), H(48), H(63), and H(119) for Cu binding; H(63), H(71), H(80), and D(83) for Zn binding], an intracellular disulfide bond and two Cu/Zn-SOD signatures were identified in Mm-icCu/Zn-SOD. The deduced amino acid sequence of Mm-icCu/Zn-SOD has a high degree of homology with the Cu/Zn-dependent SODs from other species, indicating that Mm-icCu/Zn-SOD should be a member of the intracellular Cu/Zn-dependent SOD family. Real-time PCR analysis showed that the highest level of Mm-icCu/Zn-SOD expression was in the hepatopancreas, while the lowest level occurred in the hemocytes. Hard clam challenged with Vibrio anguillarum showed a time-dependent increase in Mm-icCu/Zn-SOD expression that reached a maximum level after 6 h. Mm-icCu/Zn-SOD purified as a recombinant protein expressed in E. coli retained a high level of biological activity, 83 % after 10 min incubation at 10-50 °C, and more than 87 % after incubation in buffers with pH values between 2.2 and 10.2. These results indicated that Mm-icCu/Zn-SOD may play an important role in the innate immune system of hard clam.


Subject(s)
Bivalvia/enzymology , Bivalvia/genetics , DNA, Complementary/genetics , Gene Expression Regulation, Enzymologic , Intracellular Space/enzymology , Superoxide Dismutase/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Enzyme Stability , Gene Expression Profiling , Hydrogen-Ion Concentration , Molecular Sequence Data , Organ Specificity/genetics , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Superoxide Dismutase/chemistry , Superoxide Dismutase/isolation & purification , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL